
1

by Richard Mansfield

VisiBase, a Visual Database Using OLE
Automation

Most significant applications include a scripting (macro) language for automating
common tasks. OLE Automation extends this capability to allow you to automate
tasks across two or more applications.

VisiBase is designed to show how one Windows-based program controls another
Windows program using OLE Automation. This control includes the capability
of fully using the features of the second, controlled program. VisiBase
demonstrates how to combine the facilities of Visual Basic — notably its built-in
Access database engine — with the DTP facilities in Word for Windows.

Telling VisiBase how to talk to Word is simple. Create a macro in Word, then
copy the text of that macro and paste it into a Visual Basic 3.0 program. In some
cases, you need to change the syntax of WordBasic arguments to make them
work correctly with OLE Automation, but this translation is simple, consistent,
and easy to remember.

VisiBase is a Visual Basic 3.0 program that uses Word for Windows 6.0 facilities
to load a disk file, update a Date Field, locate bookmarks, delete and insert text,
insert photographs, and save the modified file back to disk.

With a Visual Basic front end, you can modify data about each employee in a
company, including viewing a scanned photograph of the employee and a brief
biography. This data, along with the photo, is automatically inserted into a Word
template, ready for publication in a company newsletter. The same VB front end
could be used, with minor modifications, to automate the creation of security ID
badges, a yearbook, and so on.

Project Description and Implementation
VisiBase allows the user to enter or modify the name, date started, .BMP file, and
narrative biographical data about each employee in a company. The user can
access each record (for editing, deleting, or adding records) by scrolling with the
standard scrollbar data control, or by clicking the employee’s name within a list
box.

When a particular employee is chosen to be the “Employee-of-the-month” (his or
her record is the current, visible record) — pressing a Command Button labeled

Creating an Employee Newsletter
Using VisiBase and OLE
Automation

§

Filename: in.doc Project:
Template: Author: Last Saved By:
Revision #: 0 Page: 1 of 9 Printed: 01/21/94 03:39 AM

!Unexpected End of Expression§

Part 1 Part Head

“Change Newsletter” automatically inserts the name, bio, years employed and
photograph into a Word template. This template, called EMPLOYEE.DOT, is a
page of the company newsletter, a regular feature called “Employee-of-the-
Month.”

OLE Automation performs the following tasks in VisiBase:

1. It locates the date field in the Word template and updates it to the
current date.

2. It locates a headline bookmark and inserts the employee’s first and
last names. Because the headline should remain on a single line,
VisiBase checks the length of the employee’s name and adjusts the
size of the typeface in Word as necessary.

3. It inserts the employee’s photograph.
4. It locates a caption bookmark beneath the photo and inserts a new

caption. Visual Basic’s Date/Time facilities are used to subtract the
employee’s start date from the current date. Then the customized
caption “Bob Jones has worked for BeBe Incorporated for 3 years” is
automatically inserted.

5. Finally, the body of the article is inserted, based on the biographical
data in the employee’s record.

6. This updated template (“EMPLOYEE.DOT”) is then saved to disk
and control is returned to the user and VisiBase.

If you wish to fine-tune the EMPLOYEE.DOT template, you can double-click a
linked OLE2 VB Control and bring up Word with the template page ready for
pre-publication polishing.

Using OLE Automation
Using OLE Automation is about as easy as using application-specific macro
languages, such as WordBasic. In fact, most OLE Automation Word is
essentially WordBasic with the name of an OLE “object” prepended.

For example, to manually move to the start of a Word document, you press
CTRL+HOME. If you record this action in a macro, then open the macro for
editing, you will see the following macro command:

Sub MAIN
StartOfDocument
End Sub

§

Filename: in.doc Project:
Template: Author: Last Saved By:
Revision #: 0 Page: 2 of 9 Printed: 01/21/94 03:39 AM

!Unexpected End of Expression§

Chapter 1 Chapter Head 3

If you were to move the cursor mouse pointer to the top of the Word document
from VisiBase via OLE Automation, you simply add the name of the object to the
WordBasic command, as in this example:

WordObj.StartOfDocument

Therefore, where StartOfDocument is a WordBasic command,
WordObj.StartOfDocument is an OLE Automation command that does the same
thing — it taps into Word and causes the cursor to move to the top of the
document.

The Meaning of “Object”
Where did we get “WordObj,” the name of this object? And what is an “object?”

In this context, an object is simply an outside program, or a subset of that
program. In Word for Windows, you define an object (Word.Basic) that allows
you to manipulate the Word for Windows application itself — taken as a whole.
Word also permits you to create objects of a bookmark, a small selection, a
sentence, or a paragraph. Each OLE-capable application contains a list of which
of its zones or facilities — in other words, its objects — are available for outside
manipulation. Applications are said to “expose” their OLE objects. Which
objects are exposed are described in each application’s manual. In some cases
you can manipulate such objects as a toolbar, or a range of cells in a spreadsheet.

Word exposes its entire macro language to OLE automation. This allows you to
significantly manipulate Word from outside Word. In this way, we can directly
affect the behavior and configuration of Word, and process documents using all
of Word’s features. You can use the outside, controlling program (in the case of
VisiBase, we use Visual Basic 3.0) to query the status of something, to change
the status of something, or to carry out an action. You can read and write
Properties, or trigger Methods.

In OLE automation, one application controls another application. However, the
control is analogous to the way applications can manipulate their own internal
objects — their features and data. For instance, you can manipulate internal
objects in Visual Basic (its Controls) by finding out (reading) a property of a
Visual Basic object (such as the Color property a shape object), changing (writing
to) that property, or using a Visual Basic method.

In Visual Basic, the qualities of an object are called properties (for example,

Color is a property of a list box). The actions you can take to affect the object are
called methods (the Clear method removes all the entries in a list box).

§

Filename: in.doc Project:
Template: Author: Last Saved By:
Revision #: 0 Page: 3 of 9 Printed: 01/21/94 03:39 AM

!Unexpected End of Expression§

Part 1 Part Head

Similarly, when you use Visual Basic to manipulate Word and a document loaded
into Word, you will be able to read or write to the qualities of the document (such
as querying or changing the font size of some text), or take more direct actions,
such as inserting a new photograph into the document.

OLE Automation in Action in a Word Document
Here is a line-by-line description of how we used OLE Automation to update a
Word for Windows document. It isn’t necessary to study WordBasic to learn
what commands you should use to cause particular behaviors in Word. Simply
create a new macro in Word by choosing Macro from the Tools menu. Start
recording the macro; then choose Edit from the Macro menu and copy the
commands that Word has created based on your recorded actions.

Figure 1: The VisiBase Application. In VisiBase, the user sees the window in
Figure 1. Most of this is fairly straightforward if you’ve used Visual Basic.
There are five text boxes into which the user can enter the name, start date,
filename of the photograph, and a biographical narrative about each employee.
In addition, there is a scroll bar with which the user can move through the records
in this database (this scroll bar is actually a data control). There is also a list box
with employee names that can be clicked as an alternative way to bring up a
particular record. Also, Visual Basic uses two files for its database,
(NEWSLETT.MDB and NEWSLETT.LDB), which are compatible with
Microsoft Access. Therefore, if the user can choose to use Access to open and
manage these files.

There are, however, three elements in the VisiBase window which are not typical
of traditional databases. First, there is a photo which appears for each employee
record. This photo comes on screen as quickly and as naturally as the new text
data when the user changes to a different record. Second, there is an OLE
Control which displays a typical Employee-of-the-Month page layout for the
company newsletter. Third, there is a Command Button labeled “Change
Newsletter.” This button is the gateway to the power of OLE Automation. Click
on this button and Word opens, loads in the Employee-of-the-Month template,
and inserts the data and photo from the current record into the template. All this
is done automatically without user intervention.

How to Program using OLE Automation
To program OLE Automation, change the information bar to inform the user that
OLE Automation is taking place when the Change Newsletter Button Is clicked:

Helpbar.Caption = " UPDATING WINWORD DOCUMENT." ‘Explain the pause to the user

§

Filename: in.doc Project:
Template: Author: Last Saved By:
Revision #: 0 Page: 4 of 9 Printed: 01/21/94 03:39 AM

!Unexpected End of Expression§

Chapter 1 Chapter Head 5

Next, declare an object variable with the Dim statement. Declare the arbitrary
name WordObj to be a new Visual Basic object:

Dim WordObj As object, years As Variant, le As Single

(Note that a couple of additional variable declarations are added on that same
line, but they are unrelated to this object declaration. They just share the Dim
line.)

Assign a specific object reference to the new object variable WordObj using the
Set statement. Use the Visual Basic CreateObject function (which defines the
object) together with the Set statement to bring to life an OLE object. The
CreateObject function returns an object and the Set statement assigns this new
object to the previously declared object variable, WordObj:

Set WordObj = CreateObject("Word.Basic")

There are two arguments you must provide to the CreateObject function: the
name of the application that is exposing the object, and the particular type (or
“class”) of object being accessed. In this case, the application name is Word and
the class is Basic.

There is now a “tube” connecting the Visual Basic application to Word for
Windows through which data and commands can pass bi-directionally. As we’ll
see, this object linking allows the Visual Basic application to contact and control
Word virtually without restriction. To invoke a WordBasic command, use the
object variable to address WordBasic. OLE Automation handles the rest of the
details. This direct access to WordBasic is superior to the older DDE approach
(sending instructions via the Visual Basic SendKeys statement).

To place the text and photo from the current record into the Word template
document, load the template into Word. You can just turn on a macro in Word
and record the steps that you wish to automate. You can then view the text of the
macro to see the list of commands.

First, open the document, move to the start of the document, locate the date field
and then force it to update. To capture the correct WordBasic programming to
accomplish these steps, start Word. Turn on macro recording: press ALT+T, M,
type in “testmac” and then press ALT+O, ENTER. Word records all keystrokes.

Using either the mouse or the keyboard, load the file EMPLOYEE.DOT and
press CTRL+HOME to go to the top of the document. Locate the date field by

pressing ALT+E, G, ALT+W and select “Field.” Now press ALT+E and select “Date”
and press ALT+T, ESC. To update the date field, press F9. Stop the macro. Then

§

Filename: in.doc Project:
Template: Author: Last Saved By:
Revision #: 0 Page: 5 of 9 Printed: 01/21/94 03:39 AM

!Unexpected End of Expression§

Part 1 Part Head

open the macro and copy the WordBasic commands into your outside OLE
Automation routine. Press ALT+T, M and select “testmac,” and press ALT+E. You
should see the following WordBasic commands:

Sub MAIN
FileOpen .Name = "EMPLOYEE.DOT", .ConfirmConversions = 0, .ReadOnly = 0, .AddToMru =
0, .PasswordDoc = "", .PasswordDot = "", .Revert = 0, .WritePasswordDoc = "", .WritePasswordDot = ""
StartOfDocument
EditGoTo .Destination = "d'DATE'"
UpdateFields
End Sub

How to Translate WordBasic into OLE Automation
There are three things to learn from this WordBasic code:

1. To use with OLE Automation, remove all the WordBasic identifiers, such as
“.Name” = and “.ConfirmConversions =”.

2. Eliminate any default arguments in the argument list, such as empty text
variables "" or items set to 0.

3. Add the object variable name (that we dimensioned earlier in our OLE
Automation program fragment: .WordObj) to each line of automation
programming.

In WordBasic, you can now mix and match arguments. Since each argument in
WordBasic is identified by such tags as .PasswordDot = or .Revert =, WordBasic
you can leave some of them out of the argument list if you want to use the
defaults. What’s more, WordBasic also allows you to list the arguments in any
order you want! See the following example in WordBasic:

FileOpen .Name = "EMPLOYEE.DOT", .ConfirmConversions = 0
means the same as this:
FileOpen .ConfirmConversions = 0, .Name = "EMPLOYEE.DOT"

You cannot mix and match arguments in Visual Basic. Visual Basic still requires
traditional argument lists. Position is important and default arguments must be
represented (at least as a location signified by a comma) if you want to set any
arguments past them further down in the list.

Translating from WordBasic to OLE Automation involves removing the dotted
labels in the argument list and removing any null or default arguments that we
wish to eliminate. For Visual Basic OLE Automation, translate WordBasic’s first
line that opens the file into a Visual Basic OLE Automation first line that does the

same thing:

§

Filename: in.doc Project:
Template: Author: Last Saved By:
Revision #: 0 Page: 6 of 9 Printed: 01/21/94 03:39 AM

!Unexpected End of Expression§

Chapter 1 Chapter Head 7

'WordBasic Code.
FileOpen .Name = "EMPLOYEE.DOT", .ConfirmConversions = 0, .ReadOnly = 0, .AddToMru =
0, .PasswordDoc = "", .PasswordDot = "", .Revert = 0, .WritePasswordDoc = "", .WritePasswordDot = ""

.VBOLEAutomation
WordObj.FileOpen directoryname$ & "EMPLOYEE.DOT"

Note that Directoryname$ is a variable in our Visual Basic program that
identifies the directory in which VISIBASE.EXE resides. VISIBASE expects to
find the Word document EMPLOYEE. DOT in this directory. To create the
complete path, append directoryname$ to the file name. The true, elemental
translation of the WordBasic line is simply WordObj.FileOpen
“EMPLOYEE.DOT”.)

Note: 1. In the example above, the .Name = label is removed from the
WordBasic version, the default arguments are removed from the argument list,
and the object variable for OLE Automation: “WordObj” is added to the
command “FileOpen,” separated by a dot:

WordObj.FileOpen

To complete our translation of the WordBasic macro commands into Visual Basic
OLE Automation commands, we follow the same three rules:

StartOfDocument
EditGoTo .Destination = "d'DATE'"
UpdateFields
'Visual Basic OLE Automation
WordObj.StartOfDocument
WordObj.EditGoTo "d'DATE'"
WordObj.UpdateFields

The rest of our transformation of WordBasic macro code into VB OLE
Automation code follows those same three rules. The following is the complete
text of the OLE Automation activity that is triggered when you click command
button labeled “Change Newsletter”:

Dim n As String, a As String
helpbar.Caption = " UPDATING WINWORD DOCUMENT." 'Explain the pause to the user
Dim WordObj As object, years As Variant, le As Single
Set WordObj = CreateObject("Word.Basic")
WordObj.FileOpen directoryname$ & "EMPLOYEE.DOT"
WordObj.StartOfDocument
WordObj.EditGoTo "d'DATE'" ' Locate Date Field.
WordObj.UpdateFields ' Update date.
WordObj.EditGoTo "headname" ' Find headline bookmark.
WordObj.EndOfLine 1 ' Select entire line.

' Calculate length of Employee Name.

n$ = txtFirstName.Text & " " & txtLastName.Text
le = Len(n$)
Select Case le 'change headline fontsize to avoid line breaks.

§

Filename: in.doc Project:
Template: Author: Last Saved By:
Revision #: 0 Page: 7 of 9 Printed: 01/21/94 03:39 AM

!Unexpected End of Expression§

Part 1 Part Head

 Case 0 To 17
WordObj.FontSize 36

 Case 18 To 25
WordObj.FontSize 24

 Case 25 To 200
WordObj.FontSize 18

End Select
WordObj.Insert UCase$(n$) ' insert Employee name.
WordObj.EditGoTo "photo" ' locate "photo" bookmark.
WordObj.CharRight 1, 1 ' select photo.
WordObj.EditClear ' delete old photo.

 'insert photo
WordObj.InsertPicture directoryname$ & datEmployeeDatabase.Recordset.Fields(3).Value
WordObj.EditGoTo "caption" 'locate "caption" bookmark
' figure out how many years the employee has worked for BeBe
If txtStartDate.Text = "" Then 'if no start date is in the record
 a$ = txtStartDate.Text 'simply use employee name as caption.
 GoTo nodate
End If

 'calculate how many years employed
years = Year(Now) - Year(txtStartDate.Text)
a$ = n$ & " has worked at BeBe for "
Select Case years
 Case Is < 1
 a$ = a$ & "less than one year."
 Case 1 To 2
 a$ = a$ & "about a year."
 Case Else
 a$ = a$ & years & " years."
End Select
nodate:
WordObj.Insert a$ 'insert caption
WordObj.EndOfDocument 1 'select all text to end of document
WordObj.EditClear 'delete it
WordObj.InsertPara 'move down two lines
WordObj.InsertPara
WordObj.Insert txtBiography.Text 'insert biographical narrative
WordObj.FileSave 'save the file to disk
Set WordObj = Nothing 'release memory/resources
helpbar.Caption = ""
End Sub

At the very end of this code, use the following command:

Set WordObj = Nothing

Setting an object variable name to “Nothing” vaporizes that object, freeing any
system resources it was consuming. If you leave this line out, the user’s Windows
system resources will remain unnecessarily depleted. Repeated calls to
CreateObject will use system resources until Windows begins to slow down and
display poor screen redraws.

§

Filename: in.doc Project:
Template: Author: Last Saved By:
Revision #: 0 Page: 8 of 9 Printed: 01/21/94 03:39 AM

!Unexpected End of Expression§

Chapter 1 Chapter Head 9

Technical Notes
To use this program you must know in advance which version of Word for
Windows the user has installed on his or her computer. We must know the
location of the EMPLOYEE.DOT file. Because Word 2.0 reveals its directory
within WIN.INI and Word 6.0 has a private .INI file for that purpose, we assume
that the user has Windows in C:\WINDOWS and is using Word 6.0. If C:\
WINDOWS is not the location of the Windows directory, change the following
line in the PROCS.BAS module (the GetWordDir function):

d = GetPrivateProfileString("Microsoft Word", "programdir", "not", answerstring, 49, "c:\windows\
Winword6.ini")

Leave this as a single line in the program. Don’t press Enter if you must edit the
final entry “c:\windows\Winword6.ini” to something like “d:\windows\
Winword6.ini.”

If the user is still using Word 2.0, you must replace the above line with the
following:

d = GetProfileString("Microsoft Word", "programdir", "not", answerstring, 49)

Replace the declaration for the API function. GetPrivateProfileString locates a
custom .INI file, whereas GetProfileString looks for an entry within WIN.INI.
Type the following declaration for GetProfileString into the Declarations section
of PROCS.BAS all on a single line:

Declare Function GetProfileString% Lib "Kernel" (ByVal lpApplicationName$, ByVal lpKeyName As
Any, ByVal lpDefault$, ByVal lpReturnedString$, ByVal nSize%)

MiscFlags
Because OLE is still a young, evolving technology, some system configurations
trigger unusual in-place editing. Sometimes an application’s toolbars will appear
instead of the complete application. Sometimes you can edit the control of the
OLE control, but the type is too small to do so. Make sure that the user can
reformat the OLE control (the sample Employee-of-the-Month that is displayed
within VISIBASE). Ensure that the OLE control MiscFlags property is set to 2.
This prevents any attempt to edit in-place. It starts Word and loads the Employee-
of-the-Month template into Word.

§

Filename: in.doc Project:
Template: Author: Last Saved By:
Revision #: 0 Page: 9 of 9 Printed: 01/21/94 03:39 AM

!Unexpected End of Expression§

	VisiBase, a Visual Database Using OLE Automation
	Project Description and Implementation
	Using OLE Automation
	The Meaning of “Object”
	OLE Automation in Action in a Word Document
	How to Program using OLE Automation
	How to Translate WordBasic into OLE Automation
	Technical Notes
	MiscFlags

